A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.
نویسندگان
چکیده
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
منابع مشابه
A Genome-Wide Over-Expression Screen Identifies Genes Involved in Phagocytosis in the Human Protozoan Parasite, Entamoeba histolytica
Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for...
متن کاملInvolvement of p21, Phosphoinositide 3-Kinase, and Vacuolar ATPase in Phagocytosis of Bacteria and Erythrocytes by Entamoeba histolytica: Suggestive Evidence for Coincidental Evolution of Amebic Invasiveness
Trophozoites of Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, phagocytose bacteria in the colonic lumen and erythrocytes (RBC) in host tissues. Because tissue invasion is an evolutionary dead end, it is likely that amebic pathogenicity is coincidentally selected, i.e., the same methods used to kill bacteria in the colonic lumen are used by parasites to damage host ...
متن کاملLocalization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica.
Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton...
متن کاملAmoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or ...
متن کاملIn silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation
In most eukaryotic cells, the poly(A) tail at the 3'-end of messenger RNA (mRNA) is essential for nuclear export, translatability, stability and transcription termination. Poly(A) tail formation involves multi-protein complexes that interact with specific sequences in 3'-untranslated region (3'-UTR) of precursor mRNA (pre-mRNA). Here we have performed a computational analysis of a large EST and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2014